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Scaling laws for the movement of people between locations in a large city
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Large scale simulations of the movements of people in a “virtual” city and their analyses are used to
generate insights into understanding the dynamic processes that depend on the interactions between people.
Models, based on these interactions, can be used in optimizing traffic flow, slowing the spread of infectious
diseases, or predicting the change in cell phone usage in a disaster. We analyzed cumulative and aggregated
data generated from the simulated movements ok1® individuals in a computefpseudo-agent-based
model during a typical day in Portland, Oregon. This city is mapped into a graph with 181 206 nodes repre-
senting physical locations such as buildings. Connecting edges model individual's flow between nodes. Edge
weights are constructed from the daily traffic of individuals moving between locations. The number of edges
leaving a noddout-degreg the edge weight&ut-traffic), and the edge weights per locati@ntal out-traffig
are fitted well by power-law distributions. The power-law distributions also fit subgraphs based on work,
school, and social/recreational activities. The resulting weighted graph is a “small world” and has scaling laws
consistent with an underlying hierarchical structure. We also explore the time evolution of the largest con-
nected component and the distribution of the component sizes. We observe a strong linear correlation between
the out-degree and total out-traffic distributions and significant levels of clustering. We discuss how these
network features can be used to characterize social networks and their relationship to dynamic processes.
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[. INTRODUCTION not exist, these systems have been statistically sampled and
the data have been used to build detailed simulations for the

Scaling laws and patterns have been detected in a grefill population. The insights gained by studying the simu-
number of systems found in nature, society, and technologyated movement of people in a virtual city can help guide the
Several common properties have been identified in network&esearch in identifying what scaling laws or underlying struc-
of scientific collaboratio{1—3], movie actors[4], cellular ~ tures may exist and should be looked for in a real city. In this
networks[5,6], food webs[7], the Internet[8], the World ~ paper we analyze a social mobility network that can be de-
Wide WeH9,10], friendship network$11], and networks of fined accurately by the simulated movement of people be-
sexual relationshipgl2]. One such property is the short av- tween locations in a large city. We analyze the cumulative
erage distance between nodes, that is, only a few edges ne@tjected graph generated from the simulated movement of
to be traversed in order to reach a node from any other nodd.6x 10° individualsin or out of 181 206 locations during a
Another common property is high levels of cluster[dgl3],  typical day in Portland, ORFig. 1). The 181 206 nodes rep-

a characteristic absent in random netwofk4]. Clustering

measures the probability that the neighbors of a node are also wy
neighbors of each other. Networks with short average dis-
tance between nodes and high levels of clustering have been )
dubbed “'srr!all _vvor]ds"[4,13]. Power-law behav!or in the Location?’i
degree distribution is another common property in many real 3
world networks[15], that is, the probability that a randomly
chosen node has degrkelecays a$ (k) ~k™? with v typi- L L]
cally between 2 and 3. Barasiaand Albert(BA) introduced Location | | Location j |
an algorithm capable of generating networks with a power-
law connectivity distributior{y=3). The BA algorithm gen- .
erates networks where nodes connect, with higher probabil- Location v v
ity, to nodes that have accumulated a higher number of

connections and stochastically generates networks with a

power-law connectivity distribution in the appropriate scale.

Social networks are often difficult to characterize because F|G. 1. Structure of the location-based network of the city of
of the different perceptions of what a link constitutes in theportiand. The nodes represent locations connected via directed
social context and the lack of data for large social networksdges based on the traffic or movement of individualstivities
of more than a few thousand individuals. Even though debetween the locations. The weights;() of the edges represent the
tailed data on the daily movement of people in a large city dadaily traffic from locationi to locationj.
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x10° x10° TABLE I. Sample section of arANsIMS activity file. In this
@ 4 (@) @ 4 (b) example, person 115 arrives for a social recreational activity at
£ 3 E 3 location 33 005 at 19.25 o'clock and departs at 21.00 o’clock.
_t: 2 ‘_g 2 Person Location Ar_rlval Departure Activity
5 4 8 4 ID ID time time type
= o A, 115 4225 0.0000 7.00 Home
3 5 10 15 20 5 10 15 20 115 49 296 8.00 11.00 Work
E Pr 10° 10X 10* 115 21677 11.2 13.00 Work
b (©) @ (d) 115 49 296 13.2 17.00 Work
‘_g g 115 4225 18.00 19.00 Home
1] 5 5 5 115 33005 19.25 21.00 Sociallrec
3 o 115 4225 213 7.00 Home
g 1 g 220 8200 0.0000 8.50 Home
= T ,loces 220 10917 9.00 14.00 School
'g 5 .10 15 20 0 '10 20 220 8200 14.5 18.00 Home
n Time (h) Time (h) 220 3480 18.2 20.00 Sociallrec

220 8200 20.3 8.6 Home

FIG. 2. The number of people active (a) work activities, (b)
school activities(d) social activities, andd) home activities as a
function of time(hourg during a “typical” day in Portland, Oregon.

frequency of four activity types in a typical dayData on

resent locations in the city and the edges connections péctivities also include origins, destinations, routes, timing,
tween nodes. The edges are weighted by daily tréffieve- and forms of transportation used. Activities for itinerant trav-
ment of individualy in or out of these locations. The €lers such as bus drivers are generated from real origin/
statistical analysis of the cumulative network reveals that it iglestination tables.
a small world with power-law decay in the out-degree distri- TRANSIMS consists of six major integrated modules: popu-
bution of locations(nodes. The resulting graph as well as lation synthesizer, activity generator, router, microsimula-
subgraphs based on different activity types exhibit scalingion, and emissions estimator. Detailed information on each
laws consistent with an underlying hierarchical structureof the modules is availablgl8]. TRANSIMS has been de-
[16,17). The out-traffic (edge weights and the total out- signed to give transportation planners accurate, complete in-
traffic (total weight of the out edges per nodiistributions ~ formation on traffic impacts, congestion, and pollution.
are also fitted to power laws. We show that the joint distri- For the case of the city of Portland, ORRANSIMS calcu-
bution of the out-degree and total out-traffic distributionslates the simulated movements of £.60° individuals in a
decays linearly in an appropriate scale. We also explore thtypical day. The simulated Portland dataset includes the time
time evolution of the largest component and the distributionat which each individual leaves a location and the time of
of the component sizes. arrival to its next destinatiotnodg. These data are used to
calculate the average number of people at each location and
the traffic between any two locations on a typical d@able
| shows a sample of a Portland activity file generated by
TRANSIMS [18] is an agent-based simulation model of the TRANSIMS.) Locations where activities are carried out are
daily movement of individuals in virtual region or city with a estimated from observed land use patterns, travel times, and
complete representation of the population at the level otosts of transportation alternatives. These locations are fed
households and individual travelers, daily activities of theinto a routing algorithm that finds the minimum cost paths
individuals, and the transportation infrastructure. The indi-that are consistent with individual choic§20-23. The
viduals are endowed with demographic characteristics takesimulation land resolution is of 7.5 ms. The simulator pro-
from census data and the households are geographically digides an updated estimate of time-dependent travel times for
tributed according to the population distribution. The trans-each edge in the network, including the effects of congestion,
portation network is a precise representation of the city’so theRouter and location estimation algorithris8], which
transportation infrastructure. Individuals move across the@enerate traveling plans. Since the entire process estimates
transportation network using multiple modes including carthe demand on a transportation network from census data,
transit, truck, bike, and walk, on a second-by-second basidand use data, and activity surveys, these estimates can thus
Records from the Department of Motor Vehicl@@MV) are  be applied to assess the effects of hypothetical changes such
used to assign vehicles to the households so that the resultimg building new infrastructures or changing downtown park-
distribution of vehicle types matches the actual distributioning prices. Methods based on observed demand cannot
Individual travelers are assigned a list of activities for thehandle such situations, since they have no information on
day (including home, work, school, social/recreational, andwhat generates the demand. Simulated traffic patterns com-
shop activitieg obtained from the household travel activities pare well to observed traffic and, consequentiyaANSIMS
survey for the metropolitan ardd9]. (Figure 2 shows the provides a useful planning tool.

Transportation Analysis Simulation System(TRANSIMS)
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TABLE II. Statistical properties of Portland’s location-based
network (cumulative over the whole day

Statistical properties Value
Total nodesN) 181 206
Size of the largest compone(®) 181192
Total directed edge€E) 5416 005
Average out-degree(k)) 29.88
Clustering coefficien{C) 0.0584
Average distance between nodés 3.1
Diameter(D) 8.0

Until recently, it has been difficult to obtain useful esti-
mates on the structure of social networks. Certain classes O

networks (scale-free network$15], small-world networks
[11,13, or Erdes-Renyi random graph$14,23), have been

PHYSICAL REVIEW E 68, 066102 (2003

of all possible shortest paths between all the locajioss
only 8. L and D are measured using a breadth first search
algorithm[26] ignoring the edge directions.

The clustering coefficient Quantifies the extent to which
neighbors of a node are also neighbors of each dt&gf
The clustering coefficient of node C;, is given by

Ci=|E(Fi)|/(|;i),

where|E(T;)| is the number of edges in the neighborhood
of i (edges connecting the neighbors iohot including i
ij%self) and Q) is the maximal number of edges that could be
rawn among thd; neighbors of nodé. The clustering co-
efficient C of the whole network isC=3={_,C;/n. For a

postulated as good representatives. In addition, data baségale-freerandom graph(BA mode) [15] with 181206

models while useful are limited since they are naturally fo-
cused on small scal¢g4]. While most studies on the analy-

nodes andm=16 [27], the clustering coefficientC,,q
~[(m—1)/8][ (In N)’’N]~0.0015[28,29. The clustering co-

sis of real networks are based on a single snapshot of th%fficient for our Iocation—_bas_ed network, igr_10ring edge direc-
systemTRANSIMS provides powerful time-dependent data of tions, is C=0.0584, which is roughly 39 times larger than

the evolution of a location-based network.

Il. PORTLAND’S LOCATION-BASED NETWORK

A “typical” realization by the TRANSIMS simulates the

dynamics of 1.& 1P individuals in the city of Portland as a

directed network, where the nodes represent locatipas

buildings, households, schools, ¢tand the directed edges

(between the nodesepresent the movemetftraffic due to
activities of individuals between locationg;odes (Fig. 1).

rand -
Highly clustered networks have been observed in other

systemd4] including the electric power grid of western US.
This grid has a clustering coefficie@=0.08, about 160
times larger than the expected value for an equivalent ran-
dom graph25]. The few degrees of separation between the
locations of the(highly clusteredl network of the city of
Portland “make” it a small world 13,11,25.

Many real-world networks exhibit properties that are con-
sistent with underlying hierarchical organizations. These net-

We have analyzed the cumulative network of the whole dayvorks have groups of nodes that are highly interconnected
as well as cumulative networks that comprise different timewith few or no edges connected to nodes outside their group.
intervals of the day. Here we use the term “activity” to de- Hierarchical structures of this type have been characterized
note the movement of an individual to the location where theby the clustering coefficient functio&(k), wherek is the
activity will be carried out. Traffic intensity is modeled by node degree. A network of movie actors, the semantic web,
the nonsymmetric mobility matrixW=(w;;) of traffic ~ the World Wide Web, the Internetautonomous system
weights assigned to all directed edges in the netwavk ( level), and some metabolic networks6,17 have clustering
=0 means that there is no directed edge connecting ntide coefficients that scale as 1. The clustering coefficient as a
nodej). function of degre€ignoring edge directionsn the Portland
network exhibits similar scaling at various levels of aggrega-
tion that include the whole network and subnetworks con-
structed by activity type (work, school, and social/
We calculate the statistical properties of a typical day inrecreational activities, see Fig). 3Ve constructed subgraphs
the location-based network of this virtual city from the cu- based on activity types, that is, those subgraphs constructed

IIl. POWER-LAW DISTRIBUTIONS

mulative mobility data generated iRANSIMS (see Table .
The average out-degreis (k) =3[_k; /n wherek; is the

degree for nodeé andn is the total number of nodes in the

network. For the Portland netwoklk)=29.88 and theout-

degree distributionexhibits power-law decay with scaling

exponent(y~2.7). The out-traffic (edge weightsand theto-
tal out-traffic (edge weights per nogl@istributions are also
fitted well by power laws.

The average distancéetween noded,, is defined as the

from all the directed edges of a specific activity type.,
work, school, socialduring a typical day in the city of Port-
land. The clustering coefficients of the subnetworks gener-
ated from work, school, and social/recreational activities are
the following: 0.0571, 0.0557, and 0.0575, respectively. The
largest clustering coefficient and the closest to the overall
clustering coefficient €=0.0584) corresponds to the sub-
network constructed from social/recreational activities. It
seems that the whole network, as well as the selected activity

median of the meanis; of the shortest path lengths connect- subnetworks, supports a hierarchical structure albeit the na-

ing a vertexi e V(G) to all other vertice$25]. For our net-

ture of such a structuréf we choose to characterize by the

work, L=3.1, which is small when compared to the size of power-law exponentis not universal. This agrees with rel-

the network. In fact, theliameter Dof the graph(the largest

evant theonf17].
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» work " school TABLE IlI. Size of. the largest component just before allnd. after 6
10 o " 10 K a.m., the time at which a sharp transition occurs. At midnight, all
!% prcic R but 14 locations belong to the largest compon@ible ).
1072 1072 Time Size of largest component
) : 5.6 27132
10° 107 10* 10° 10° 10* 5.8 31511
< 6.0 50242
2 1o ~._social/ o 6.2 54670
% v_!_'vecreational 6.4 62346
£ ot 6.6 76 290
Q
g 102 1072 6.8 84516
2 7.0 106 160
k5 _
3 1 10° 10 10° 10° 10* _ _
o Out-degree, k Let X,(t) be the number of components of sizeat time

t. ThenX(t) =2 =1 X(t) is the total number of components
FIG. 3. Log-log plots of the clustering coefficient as a function at time t[Fig. 5(a)]. Furthermore, the probability(m) that a
of the out-degree for subnetworks constructed from work activitiesyandomly chosen nodéocation) belongs to a component of
line has slope-1. Notice the scaling~* for the school and social/ iant component formgFig. 5(b)].
recreational activities. However, for the subnetwork constructedg To identify the relevance of the temporal trends, we com-
from work activities, the clustering coefficient is almost indepen-puted the out-degree distribution of the network’for three
dent of the out-degrele different time intervals: the morning from 6 a.m to 12 p.m.;

. the workday from 6 a.m. to 6 p.m.; and the full 24 h. In the

_pnderstanding the tempqral properties (_)f networks ISmorning phase, the out-degree distribution has a tail that de-
critical to the study of superimposed dynamics such as thgays as a power law with=2.70 (for the workdayy=2.43
spread of epidemics on networks. Most studies of superimémd for the full dayy=2.40. The distribution of the out-

posed processes on networks assume that the contact sty ee data has two scaling regions: the number of locations

ture is fixed(sge, for example, Reff30-38). Here, we take is approximately constant for out-degre€ 20 and then de-
a look at the time evolution of the largest connected COMPOzavs as a power law for high degree nodgi. 6). The
nent of the location-based network of the city of Portlanddegree distribution for the undirected netweignoring edge

(Fig. 4. We have observed that a sharp transition occurs al]jirectior'b displays power-law behavior, but with slightly dif-

about 6 a.m. In fact, by 7 a.m. the size of the largest coms t | ts: 2 3@norni 2 48 k-
ponent includes~60% of the locationgnodes. Table I de;;narﬁ)gv;eglgml Z);g;)nen s: 2.3@orning, 2.48 (wor
shows the size of the largest component just before and after "’ ' '

the sharp transition occurs. 4

x10

18F ; 7 10" ¢~
. a) b) o 4am.
10 £ : * Bam.

182( . . - © 16

16} 14}
1=
2 4t 12
g
g 121 = 10

x

o L
v 10f 8
g 6
8 8
S ol
g 4 .
—— *
w L 0

2 4 10°

0 | . . . Time (h) m/S

0 5 10 15 20

Time (h) FIG. 5. (a) The number of componen¥(t) between 4 a.m. and

8 a.m.(b) Probability distributionP(m) of the normalized compo-
FIG. 4. The size of the largest componéciuste) over time. A nent sizes at two different times of the day. The component sizes
sharp transition is observed at about 6 a.m. when people move froifm) have been normalized §y the size of the largest component of
home to work or school. the cumulative network during the whole dékable ).
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. o ) *
10% - morning | 10
¥ *  workday
@ 103_3) 10°}
2 2
8 02
s
2
S 10° = 0%
o (o]
_Q T
g
= 1] =} 1
10 Z 10t
B 23
3
<etEDDNE
0 0
10 : 10 : 1° . .
10° 10° 10* 10° 10° 10° 10° 10' 102 10° 10*
out-degree out-degree

Total out-traffic

FIG. 6. Distribution of the out-degrees of the location-based FIG. 8. Distribution of the total out traffic for the location-based
network of the city of Portland. There are approximately the samenetwork of the city of Portland. There are approximately the same
number of nodeglocations with out-degreek=1,2,...,10. For number of locationgnode$ with small total out traffic. The number

k>10 the number of nodes with a given out-degree decays as @f locations where more than 30 peogégpproximately leave each

power lawP(k)=k™” with (a) y=2.70 for the mornind6 a.m.—12  day decays as a power law wit=2.74.

p.m), y=2.43 for the workday6 a.m.—6 p.m), and(b) y=2.40 for

the full day. The distribution of the total out-traffic per locatiow;’s

) ) ) [w;=2;w; ;], is characterized by two scaling regions. The
The strength of the connections in the location-based netgj of this distribution decays as a power law with exponent

work is measured by the traffilow of individualg between y=2.74 (Fig. 8. This is almost the same decay as the out-

locations in a “typical” day of the city of Portland. The degree distributioriy=2.70 because the out-degree and the
log-log plot of the out-traffic distributions for three different tota| out-traffic are highly correlatewith correlation coef-
periods of time(Fig. 7) exhibits power law decay with ex- ficient p=0.94).

ponentsy=3.56 for the morning,y=3.74 for the workday,

and y=3.76 for the full day. The out-traffic distribution is IV. CORRELATION BETWEEN OUT-DEGREE AND
characterized by a power-law distribution for all values of '

the traffic-weight matriXWV. This is not the case for the out- TOTAL OUT-TRAFFIC
gg\?vrgflac\j/\llsftirtlsbl\j\t/gln oﬁ{ytpoer S“;R’ggﬁ@ﬁagg' dﬁégv;/:ee e a _The degree of correlatic_)n between various networ_k prop-
erties depends on the social dynamics of the population. The
107 . 1o . systematic generation and resulting structure of these net-
] - morning works are important to understand dynamic processes such
ol @ + workday | ol B) ] as epidemics that “move” on these networks. Understanding
. ° the mechanisms behind these correlations will be useful in
- o ° modeling the fidelity networks.
0%, ] 0% o ] In the Portland network, the out-degrkeand total out-
3 1ol * ol E traffic v _have a correlation coefﬁc_ierpizo.g_él on a log-log
5 kS ° scale with 95% Qf the node@oca.tlons) havmg out-degrge
. o 3 . ® and total out-traffic less than 1@Big. 9); that is, the density
2y 1 10 1 of their joint distributionF (k,v) is highly concentrated near
. % , small values of the out-degree and total out-traffic distribu-
107 4 3 0 tions. The joint distribution supports a surface that decays
o " linearly when the density is in logarithmic scdleig. 10.
e — " o= V. CONCLUSIONS
10° 10° 10° 10’ 1o* 10’ Strikingly similar patterns on data from the movement of
Out-traffic Out-traffic

1.6x 10° individuals in a “typical” day in the city of Port-

FIG. 7. The out-traffic distribution of the location-based net- land have been identified at multiple temporal scales and
work of the city of Portland follows a power laP(k)ock Y] with ~ various levels of aggregation. The ana!y5|s is based on the
(@) y~3.56 (morning, y~3.74 (afternoon, and (b) y~3.76 (full mapping of people’s movement on a weighted directed graph
day). Hence a few connections have high traffic but most connecwhere nodes correspond to physical locations and where di-

tions have low traffic. rected edges, connecting the nodes, are weighted by the
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4

10 3500
3000
3
10 | 2500
Q
=
g @ 2000
£, =
3 10% -%
8
5 :
[ 2
10"t
2
100 ) - ) 2 ! . total out—traffic
10° 10 10 10° 10
Out-degree

FIG. 9. Correlation between the out-degree and the total out-
traffic. The correlation coefficient ig=0.94 on a log-log scale.
Most (95%) of the locations have fewer than 100 people leaving
during the day.

number of people moving in and out of the locations during
a typical day. The clustering coefficient has been observed tc
scale approximately as® (k is the node degréeor suffi-
ciently largek. This scaling is consistent with that obtained
from models that postulate underlying hierarchical structures
(few nodes get most of the actipihe out-degree distribu-
tion in log-log scale is relatively constant for smallbut
exhibits power-law decay afterwarfi®(k)ock™?]. The dis-
tribution of daily total out-traffic between nodes in log-log
scale is flat for smalk but exhibits power-law decay after-
wards. The distribution of the daily out-traffic of individuals FIG. 10. (Color onling (a) Joint distributionF (k,v) (b) joint
between nodes scales as a power law fokdegree. distribution F(k,v) in logarithmic scale between the out-degiee
The observed power-law distribution in the out-traffic and the total out-traffie in the location-based network of the city
(edge weights is therefore, supportive of the theoretical of portiand.
analysis of Yooket al. [39] who built weighted scale-free
dynamic networks and proved that the distribution of theponent, suddenly emerges. The study of superimposed pro-
total weight per nodétotal out-traffic in our networkis @  cesses on networks such as those associated with the
power law where the weights are exponentially distributed. potential deliberate release of biological agents needs to take
There have been limited attempts to identify at least soménto account the fact that traffic is not constant. Planning, for
characteristics of the joint distributions of network proper-example, for worst-case scenarios requires knowledge of
ties. The fact that daily out-degree and total out-traffic dataedge traffic, in order to characterize the temporal dynamics
are highly correlated is consistent again with the results obof the largest connected network compondag.
tained from models that assume an underlying hierarchical
structure(few nodes have most of the connections and get
most of the traffiqweight). The Portland network exhibits a
strong linear correlation between out-degree and total out- The authors thank Pieter Swart, Leon Arriola, and Albert-
traffic on a log-log scale. We use this time series data to look.aszlo Barabai for interesting and helpful discussions. This
at the network “dynamics.” As the activity in the network research was supported by the Department of Energy under
increases, the size of the maximal connected component eontract No. W-7405-ENG-36 and the National Infrastruc-
hibits threshold behavior, that is, a “giant” connected com-ture Simulation and Analysis Centé@dISAC).

log(number of locations)

total out-traffic
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